研究院要闻
研究院要闻
近年来,二维结构的纳米材料由于其独特的物理、结构特性及其在光电子、场效应管、能源转换和存储等领域的潜在应用,吸引了研究人员的广泛兴趣。目前二维材料主流的制备方法可以分为气相法和液相法,气相法(如化学气相沉积法)可以得到高质量、大尺寸的纳米片,但是其成本高、产量低;液相法简单、可控、产物成分均匀,但是液相法(液相剥离、化学合成)很难获得大尺寸的二维纳米片,且后续需要复杂的纯化处理。而且,剥离法只适用于本征层状结构的二维材料的合成。如何结合气相法和液相法各自的优势,提出一种通用、可控的制备方法实现大尺寸、成分均匀的非层状二维材料的规模化制备是科研人员需要攻克的难题,也是推动二维材料的实际应用要面临的问题。
近日,我研究院团队在国际顶级期刊Advanced Materials上发表了题为“Mass Production of Large-Sized, Nonlayered 2D Nanosheets: Their Directed Synthesis by a Rapid “Gel-Blowing” Strategy, and Applications in Li/Na Storage and Catalysis”的研究论文。该研究提出了一种全新的“凝胶-膨胀”策略,合成出了包括二维的金属氧化物、二维的氮掺杂碳、二维的金属氧化物/氮掺杂碳以及二维金属/氮掺杂碳等在内的十余种二维材料。研究人员受中国传统民间艺术“吹糖人”的启发,首先通过溶胶-凝胶过程得到类似于“糖浆”的粘稠状凝胶,之后采用快速加热(仅需~1分钟)产生的大量气体将凝胶“吹”成超薄的二维纳米片,无需后续的纯化处理。“凝胶-膨胀”策略综合了气相法和液相法的优点,所得纳米片质量高、成分均匀,厚度可达2-3 nm,直径可达100 μm。该制备方法在合成非层状结构的二维材料方面具有普适性,通过选择合适的金属前驱体和煅烧条件,可以合成出更多具有不同化学组成和结构的二维材料。所得二维材料在锂离子电池、钠离子电池和电催化等领域均表现出非常优异的性能。该研究为非层状结构的二维材料的合成开辟了新的道路,受到了国际同行的广泛关注。